Announcements

1) Office hours change; no office hours Tuesday, office hours Thursday 9-11 AM
2) Practice problems for Exam 1 available under "Assignments" on Canvas.

The Wronskian and Linear Independence

If f, g are defined on an interval I and there is a to in I with

$$
f^{\prime}\left(t_{0}\right) g\left(t_{0}\right)-g^{\prime}\left(t_{0}\right) f\left(t_{0}\right)=0
$$

(numerator of the quotient rule for f / g)
then f and gore linearly dependent on I.

Complex Numbers and Linear, homogeneous, secund order equations or what if the roots aren't real? (Section 4.3) (Not on Exam 1)

The Heat Equation
Temperature $U(x, t)$ at position X and time t in a thin rod given by

$$
\frac{\partial u}{\partial t}(x, t)=k \frac{\partial^{2} u}{\partial x^{2}}(x, t)
$$

where $k \geq 0$ is the "thermal conductivity" of the material

Wishful Thinking:

I wish that

$$
u(x, t)=f(x) g(t)
$$

for some real-valued
functions f and g.
Rewrite the heat equation.

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial}{\partial t}(f(x) g(t)) \\
& =f(x) g^{\prime}(t) \\
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial^{2}}{\partial x^{2}}(f(x) g(t)) \\
& =f^{\prime \prime}(x) g(t)
\end{aligned}
$$

(t is a constant with respect tox, x is a constant with respect to t)

The heat equation
becomes

$$
f(x) g^{\prime}(t)=k f^{\prime \prime}(x) g(t)
$$

Dividing both sides by $k f(x) g(t)$ we get

$$
\frac{1}{k} \frac{g^{\prime}(t)}{g(t)}=\frac{f^{\prime \prime}(x)}{f(x)}
$$

Since x and t are independent variables, the only way a function of x can equal a function of t is if they are both constant l. So there is a number α with

$$
\frac{1}{k} \frac{g^{\prime}(t)}{g(t)}=\frac{f^{\prime \prime}(x)}{f(x)}=\alpha
$$

2 equations to solve:

1) $\frac{1}{k} \frac{g^{\prime}(t)}{g(t)}=\alpha$.

Multiply by k to get

$$
\frac{g^{\prime}(t)}{g(t)}=\alpha k \text {, integrate }
$$

with respect to t. We get

$$
\ln g(t)=\alpha k t+C, \text { so }
$$

Exponentiating,

$$
g(t)=e^{\alpha k t+c}
$$

$$
\begin{aligned}
& \text { 2) } \frac{f^{\prime \prime}(x)}{f(x)}=2 \text {, so } \\
& f^{\prime \prime}(x)=\alpha f(x) \text { and } \\
& f^{\prime \prime}(x)-\alpha f(x)=0
\end{aligned}
$$

We know how to solve!
Suppose $f(x)=e^{r x}$.
Then $f^{\prime \prime}(x)=r^{2} e^{r x}$, so
we get

$$
\begin{gathered}
e^{r x}\left(r^{\alpha}+\alpha\right)=0 \text { and } \\
r^{2}=\alpha, \text { so } \\
r= \pm \sqrt{\alpha}
\end{gathered}
$$

Q: What if $\alpha<0$?
Are there still solutions when r is not a real number?

If $\alpha<0$, then $-\alpha>0$.
If we let $f(x)=\sin (\sqrt{-2} x)$

$$
f^{\prime \prime}(x)=-\alpha(-\sin (\sqrt{-\alpha} x)) \text {, so }
$$

$$
\begin{aligned}
& f^{\prime \prime}(x)-\alpha f(x) \\
= & -\alpha(-\sin (\sqrt{-\alpha} x)+\sin (\sqrt{-\alpha} x)) \\
= & 0
\end{aligned}
$$

So there are still solutions if $\alpha<0$!

Could also find a solution in cosines: $f(x)=\cos (\sqrt{-\alpha} x)$

Since our original solutions were supposed to be

$$
e^{r x} \text { where } r= \pm \sqrt{\alpha}
$$

there should be a connection between $e^{r x}, \cos (\sqrt{-\alpha} x)$, and $\sin (\sqrt{-\alpha} x)$.
$\alpha<0$ gives r imaginary!

If $i=\sqrt{-1}$,

$$
\begin{aligned}
& r= \pm \sqrt{\alpha}, \alpha<0, \\
& r= \pm i \sqrt{-\alpha}
\end{aligned}
$$

Conrection: MacLaurin Series!

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!} \\
& \sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

Next time: Calculate

$$
e^{i x} \text { for } x \in \mathbb{R} \text { ! }
$$

